Classification of Distributed Systems
Properties of Distributed Systems

- motivation: advantages of distributed systems
- Classification
 - architecture based
 - on interconnection
 - on memory access
 - design based (OS models)
- Design issues of a distributed system
 - transparency
 - heterogeneity
 - autonomy
 - others

Why Use Distributed Systems?
What are the Advantages?

- Price / performance
 - Network of workstations provides more MIPS for less $ than a mainframe does
- Higher performance:
 - n processors potentially give n times the computational power
- Resource sharing:
 - Expensive (scarce) resources need not be replicated for each processor
- Scalability:
 - Modular structure makes it easier to add or replace processors and resources
- Reliability:
 - Replication of processors and resources yields fault tolerance

Classification of Operating Systems (cont.)

"True" Distributed Operating System
- Loosely-coupled hardware
 - No shared memory, but provides the "feel" of a single memory
- Tightly-coupled software
 - One single OS, or at least the feel of one
- Machines are somewhat, but not completely, autonomous

Classification of MIMD Architectures

- Tightly coupled = parallel processing
 - Processors share clock and memory, run one OS, communicate frequently
- Loosely coupled = distributed computing
 - Each processor has its own memory, runs its own OS (?), communicates infrequently

Classification of Multiprocessors Based on Interconnection Network

- Three main types of interconnection:
 - Bus
 - Switch (crossbar, multistage switch)
- Bus-based interconnection
 - Simple
 - Bus is a broadcast medium
 - Contention for access to bus (does not scale well)
 - Complicates caches (need snoopy cache)

Classification of Multiprocessors Based on Interconnection Network (cont.)

- Crossbar switch:
 - Usually no contention for memory access — multiple memories can be accessed in parallel
 - Simple routing
 - Number of crossbar switches grows quadratically
Classification of Multiprocessors Based on Interconnection Network (cont.)

- Multistage switch
 - Reduced number of switches
 - Increased communication delay
 - Increased contention for memory access
 - Complex network

Classification of Multicomputers Based on Interconnection Network

- Two main types of interconnection:
 - Switching network
 - LAN (local area network)

Switching network

- Grid
 - \(r^2 \) nodes arranged as an \(n \times n \) grid
 - Maximum route proportional to \(r^2 \)
 - Most messages take multiple hops

Hypercube

- \(n \)-degree hypercube \((n\text{-cube})\) consists of \(2^n \) nodes (processors) arranged in an \(n \)-dimensional cube, where each node is connected to \(n \) other nodes
- Maximum route proportional to \(n \)
- Most messages take multiple hops

Classification of Multiprocessors and Multicomputers, Based on Memory Access

- UMA — Uniform Memory Access
 - Main memory is at a central location

- NUMA — Non-Uniform Memory Access
 - Main memory is physically partitioned, with each partition attached to a different processor
 - Each processor can access its own memory (fast), or the memory of another processor (slow)

- NORMA — No Remote Memory Access
 - Main memory is physically partitioned, with each partition attached to a different processor
 - A processor can not access the memory of another processor

Distributed System Models

- Minicomputer model
 - Several minicomputers connected to a network, each with several terminals

- Workstation model
 - Many workstations connected to a network
 - Particularly useful if users can use remote workstations (process migration)

- Workstation-server model
 - Same, plus more some machines run as servers: file server, print server, etc.
 - Good resource sharing (printers, etc.), cheap workstations (don’t need big disks)

- Processor-pool model
 - Terminals connect to network, pool of processors connect to network

Goals of a Distributed System: Transparency

- Access transparency
 - User is unaware whether a resource is local or remote

- Location transparency
 - User is unaware of physical location of hardware or software resources
 - location transparency
 - user mobility

- Migration transparency
 - User is unaware if OS moves processes or resources (e.g., files) move to a different physical locations

- Replication transparency
 - Resource duplication is invisible to users

- Concurrency transparency
 - Resource sharing is invisible to users

Goals of a Distributed System: Support Heterogeneity

- Heterogeneity means “consisting of a number of completely different elements”

- Computer hardware heterogeneity
 - Different computer architectures (e.g., instruction sets, data representations) of components in distributed systems

- Network heterogeneity
 - Different transmission media, signaling, network interfaces, and protocols

- Software heterogeneity
 - Different operating systems, application programs

- Support for heterogeneity remains a mostly unsolved problem
Goals of a Distributed System:
Right Degree of Autonomy
- Autonomy is a measure of the independence of the components in a distributed system
- Low degree of autonomy = dependent
 - Inflexible
 - Little robustness in the presence of failures
- High degree of autonomy = independent
 - More flexibility
 - High redundancy
 - May still require some central control
 - Poor resource sharing and coordination
- Determining the right degree of autonomy in a distributed system is a difficult problem

Other design issues of a distributed system
- Fault tolerance:
 - fault avoidance
 - fault tolerance
 - redundancy
 - distributed control
 - fault detection/recovery
- flexibility needed
 - to ease modification
 - ease enhancement
- performance
 - batch if possible
 - cache when possible
 - minimize network traffic
 - parallelize

Other properties of a distributed system (cont.)
- scalability
 - avoid centralized entities
 - avoid centralized algorithms
 - spread the load
- security
 - hard because there is no single point of control/authentication
 - the communicating parties should be sure of each other identity (be able to trust each other)
 - the communicating parties should be sure that the communication is not compromised (altered or eavesdropped)